Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization

نویسندگان

  • Tomoya Murata
  • Taiji Suzuki
چکیده

In this paper, we develop a new accelerated stochastic gradient method for efficiently solving the convex regularized empirical risk minimization problem in mini-batch settings. The use of mini-batches is becoming a golden standard in the machine learning community, because mini-batch settings stabilize the gradient estimate and can easily make good use of parallel computing. The core of our proposed method is the incorporation of our new “double acceleration” technique and variance reduction technique. We theoretically analyze our proposed method and show that our method much improves the mini-batch efficiencies of previous accelerated stochastic methods, and essentially only needs size √ n mini-batches for achieving the optimal iteration complexities for both nonstrongly and strongly convex objectives, where n is the training set size. Further, we show that even in non-mini-batch settings, our method surpasses the best known convergence rate for nonstrongly convex objectives, and it achieves the one for strongly convex objectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems

We consider a composite convex minimization problem associated with regularized empirical risk minimization, which often arises in machine learning. We propose two new stochastic gradient methods that are based on stochastic dual averaging method with variance reduction. Our methods generate a sparser solution than the existing methods because we do not need to take the average of the history o...

متن کامل

Doubly Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization with Factorized Data

We proposed a doubly stochastic primal-dual coordinate optimization algorithm for regularized empirical risk minimization that can be formulated as a saddlepoint problem. Different from existing coordinate methods, the proposed method randomly samples both primal and dual coordinates to update solutions, which is a desirable property when applied to data with both a high dimension and a large s...

متن کامل

SGD with Variance Reduction beyond Empirical Risk Minimization

We introduce a doubly stochastic proximal gradient algorithm for optimizing a finite average of smooth convex functions, whose gradients depend on numerically expensive expectations. Our main motivation is the acceleration of the optimization of the regularized Cox partial-likelihood (the core model used in survival analysis), but our algorithm can be used in different settings as well. The pro...

متن کامل

An Accelerated Proximal Coordinate Gradient Method

We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...

متن کامل

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate method, which alternates between maximizing over one (or more) randomly chosen dual variable and minimizing over the primal variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017